Technologies

Irrigation using a Californian network [Mali]

Irrigation à partir d’un réseau californien (French)

technologies_1639 - Mali

Completeness: 78%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Assarki Oumar

Agricultural Competitiveness and Diversification Programme (PCDA)

Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Good Practices in Soil and Water Conservation - A contribution to adaptation and farmers ́ resilience towards climate change in the Sahel (GIZ)
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) - Germany

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

No

1.5 Reference to Questionnaire(s) on SLM Approaches (documented using WOCAT)

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

A micro-irrigation system to use water more efficiently and increase yields

2.2 Detailed description of the Technology

Description:

A Californian network is a micro-irrigation system developed in California. The system, which is adapted to work with Malian irrigation systems, uses a pump unit that feeds in water from a river or borehole. The Californian system uses PVC sanitation piping with a diameter of 63 millimetres, sunk 50 centimetres underground.
Technical characteristics of the irrigation system: Pumping: a 3.5-horse-power pump unit with a lifespan of five years and throughput of 36 cubic metres per hour at an average height of 30 metres; fuel consumption: 1 to 1.3 litres of petrol per hour; PVC sanitation piping; two hydrants functioning as water intakes and equipped with Φ50 hose couplings; connection parts (tees, elbows, couplings, reducers); distribution using water jets.

The technical objective is to use water more efficiently and increase yields.
The technique is already used by other developers without the support of PCDA. Yields increase – for example, demonstration plots produce 15 tonnes of potato per hectare compared to 10 tonnes per hectare on control plots. Water consumption is reduced along with pumping costs. The system requires less person-hours and generates higher revenues.

Implementation: Identification of sites either by (i) identifying a demonstration plot in a controlled environment or (ii) identifying plots and developers in the rural environment. In a controlled environment: developers come and visit a demonstration scheme; interested parties submit applications to PCDA; applications are reviewed (conditions: be an actor in a relevant sector, be able to provide staff, have at least three years direct professional experience, and be keen to adopt the innovations put forward by PCDA); PCDA visits sites to assess whether the land is suitable; consultants (study and oversight structures) are contracted to draw up project plans (PCDA funds the consultancy); projects are submitted for approval to the Regional Committee for the Approval of Projects, comprising the governor, banks, consultants, interbranch organisations; following the Committee’s approval, SME or large company projects must then be approved by the National Committee for the Approval of Projects in Bamako – very small businesses are not affected by this step; selected developers are informed and must then pay their contribution; the individual plots are developed – for small projects (5 to 15 million CFA francs) 75% of the investment is given in the form of a PCDA grant; mid-size projects (15 to 50 million CFA francs) receive 50% of PCDA grant, the remainder is provided through bank loans. Large companies receive 75% of the consultancy work (maximum 30 million CFA francs) as PCDA subsidy; a partnership agreement is set up with the Regional Directorate of Agriculture and the Rural Economy Institute to monitor the project; the Rural Economy Institute draws up the demonstration protocols and conducts the monitoring of demonstrations (data collection); PCDA and the consultancies deliver training, provide support and carry out monitoring.
Operation: an agricultural calendar is drawn up; the consultancies provide support throughout the project; consultancies deliver their monitoring reports; local craftspeople are trained in upkeep and repair. The piping has a lifespan of five years.
PCDA promotes innovation, subsidises funding, provides support and conducts evaluation activities. Consultancies conduct studies, take charge of monitoring and reporting, and support developers. Banks/microfinance organisations provide co-financing and loans, and train up developers. Developers part-fund training activities and implement the project.

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Mali

Region/ State/ Province:

Mali

Further specification of location:

Sikasso region (Bamadougou, N’Goroudougou, etc.)

Comments:

Five schemes in place in Sikasso town and ten more in the vicinity

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • less than 10 years ago (recently)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions
Comments (type of project, etc.):

Since 2005

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production

3.2 Current land use type(s) where the Technology is applied

Land use mixed within the same land unit:

Yes

Specify mixed land use (crops/ grazing/ trees):
  • Agro-pastoralism (incl. integrated crop-livestock)

Cropland

Cropland

  • Annual cropping
Number of growing seasons per year:
  • 1
Specify:

Longest growing period in days: 120; Longest growing period from month to month: August-November

Grazing land

Grazing land

Comments:

Major land use problems (compiler’s opinion): inefficient use of irrigation water
Livestock density: 1-10 LU /km2

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • mixed rainfed-irrigated

3.5 SLM group to which the Technology belongs

  • irrigation management (incl. water supply, drainage)

3.6 SLM measures comprising the Technology

structural measures

structural measures

  • S11: Others
Comments:

Specification of other structural measures: micro-irrigation system

3.7 Main types of land degradation addressed by the Technology

chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
biological degradation

biological degradation

  • Bc: reduction of vegetation cover
water degradation

water degradation

  • Ha: aridification
Comments:

Main causes of degradation: over abstraction / excessive withdrawal of water (for irrigation, industry, etc.)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • restore/ rehabilitate severely degraded land

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Technical specifications (related to technical drawing):

Technical knowledge required for field staff / advisors: high
Technical knowledge required for land users: low
Main technical functions: increase / maintain water stored in soil, water harvesting / increase water supply, promotion of vegetation species and varieties (quality, eg palatable fodder)
Secondary technical functions: increase of groundwater level / recharge of groundwater, increase of biomass (quantity)
Structural measure: micro-irrigation system

4.2 General information regarding the calculation of inputs and costs

other/ national currency (specify):

CFA Franc

If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

517.0

4.3 Establishment activities

Activity Timing (season)
1. Identification of sites
2. developers come and visit a demonstration scheme
3. consultants are contracted to draw up project plans
4. approval of projects
5. selected developers are informed and must then pay their contribution; the individual plots are developed
6. an agricultural calendar is drawn up

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Other Total construction 1.0 313049.0 313049.0 100.0
Total costs for establishment of the Technology 313049.0
Total costs for establishment of the Technology in USD 605.51

4.5 Maintenance/ recurrent activities

Activity Timing/ frequency
1. local people are trained in upkeep and repair

4.7 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

Costs and cost effectiveness of the good practice
Potato: production value – 300,000 CFA francs (582 Dollar); cost of production – 161,125,000 CFA francs (313'049 Dollar); profit – 146,125 CFA francs (283 Dollar)

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • semi-arid

Thermal climate class: tropics

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
  • fine/ heavy (clay)
Topsoil organic matter:
  • medium (1-3%)
  • low (<1%)

5.4 Water availability and quality

Ground water table:

5-50 m

Availability of surface water:

medium

Water quality (untreated):

for agricultural use only (irrigation)

5.5 Biodiversity

Species diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • mixed (subsistence/ commercial)
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • poor
  • average
Level of mechanization:
  • manual work
Gender:
  • men
Indicate other relevant characteristics of the land users:

Population density: < 10 persons/km2
Annual population growth: 2% - 3%
10% of the land users are rich.
50% of the land users are average wealthy.
30% of the land users are poor.
10% of the land users are very poor.

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • small-scale

5.8 Land ownership, land use rights, and water use rights

Comments:

The irrigated land is allocated by the chief

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

risk of production failure

increased
decreased

production area

decreased
increased
Income and costs

farm income

decreased
increased

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

conflict mitigation

worsened
improved

Contribution to human well-being

decreased
increased
Comments/ specify:

Yields increase. Demonstration plots produce 15 tonnes of potato per hectare compared to 10 tonnes per hectare on control plots. Water consumption is reduced along with pumping costs. The system requires less person-hours and generates higher revenues.

Ecological impacts

Water cycle/ runoff

water quantity

decreased
increased

groundwater table/ aquifer

lowered
recharge
Soil

soil moisture

decreased
increased

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well
local windstorm well
Climatological disasters
How does the Technology cope with it?
drought well
Hydrological disasters
How does the Technology cope with it?
general (river) flood well

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period well

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

positive

6.5 Adoption of the Technology

Comments:

There is a moderate trend towards spontaneous adoption of the Technology
There has been a good level of replication of the Californian network.

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Yields increase–demonstration plots produce 15 tonnes of potato per hectare compared to 10 tonnes per hectare on control plots. Water consumption is reduced along with pumping costs. The system requires less person-hours and generates higher revenues.
The technique is already used by other developers without the support of PCDA.

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
It is essential for developers to have funds available for their contribution. The cost of projects is often underestimated, which leads to delays in implementation.

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys
  • interviews with land users
When were the data compiled (in the field)?

01/07/2012

7.2 References to available publications

Title, author, year, ISBN:

Manual of Good Practices in Small Scale Irrigation in the Sahel. Experiences from Mali. Published by GIZ in 2014.

Available from where? Costs?

http://star-www.giz.de/starweb/giz/pub/servlet.starweb

Title, author, year, ISBN:

Technical and economic reference document: Irrigation de la pomme de terre par aspersion à partir d’un réseau californien [Irrigating potato crops using sprinklers fed by a Californian Network], April 2009

Links and modules

Expand all Collapse all

Modules